10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax (2023)

learning objectives

At the end of this section, you will be able to:

  • Describe the connective tissue layers that surround skeletal muscle
  • Explain how muscles work with tendons to move the body
  • Identify areas of skeletal muscle fibers
  • Describe excitation-contraction coupling

The best-known characteristic of skeletal muscle is its ability to contract and cause movement. Skeletal muscles act not only to produce movement but also to stop it, such as resisting gravity to maintain posture. Small and constant adjustments of the skeletal muscles are necessary to keep the body upright or balanced in any position. Muscles also prevent excessive movement of bones and joints, maintaining skeletal stability and preventing damage or deformation of the skeletal structure. Joints can become misaligned or completely dislocated by pulling on associated bones; the muscles work to keep the joints stable. Skeletal muscles are located throughout the body at the openings of internal tracts to control the movement of various substances. These muscles allow functions such as swallowing, urination, and defecation to be under voluntary control. Skeletal muscles also protect the internal organs (particularly the abdominal and pelvic organs) by acting as an external barrier or shield against external trauma and by supporting the weight of the organs.

Skeletal muscles contribute to maintaining the body's homeostasis by generating heat. Muscle contraction requires energy, and when ATP is broken down, heat is produced. This heat is most noticeable during exercise, when sustained muscle movement causes the body temperature to rise, and in cases of extreme cold, when shivering produces random contractions of skeletal muscles to generate heat.

Each skeletal muscle is an organ consisting of several integrated tissues. These tissues include skeletal muscle fibers, blood vessels, nerve fibers, and connective tissue. Each skeletal muscle has three layers of connective tissue (called “mysia”) that surround it and provide structure to the muscle as a whole, and also compartmentalize the muscle fibers within the muscle (Figure 10.3). Each muscle is surrounded by a sheath of dense, irregular connective tissue called theepimysium, which allows a muscle to contract and move with force while maintaining its structural integrity. The epimysium also separates the muscle from other tissues and organs in the area, allowing the muscle to move independently.

10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax (1)

Figure10.3 The three layers of connective tissue Bundles of muscle fibers, called fascicles, are covered by the perimysium. Muscle fibers are covered by endomysium.

(Video) Chapter 10.2 Skeletal Muscle Structure

Within each skeletal muscle, muscle fibers are organized into individual bundles, each called afascicle, by an intermediate layer of connective tissue calledperimysium. This fascicular organization is common in limb muscles; allows the nervous system to trigger a specific movement of a muscle by activating a subset of muscle fibers within a muscle bundle or fascicle. Within each fasciculus, each muscle fiber is surrounded by a thin connective tissue layer of collagen and reticular fibers calledendomysium. The endomysium contains the extracellular fluid and nutrients to support the muscle fiber. These nutrients are delivered through the blood to muscle tissue.

In skeletal muscles that work with tendons to pull bones together, collagen in the three layers of tissue (the mysia) intertwines with the collagen in a tendon. At the other end of the tendon, it fuses with the periosteum that covers the bone. The tension created by muscle fiber contraction is then transferred through the mysia, to the tendon and then to the periosteum to pull on the bone to move the skeleton. Elsewhere, mysia may fuse with a broad, tendon-like blade called aaponeurosis, or the fascia, the connective tissue between the skin and bones. The broad layer of connective tissue in the lower back into which the latissimus dorsi muscles (the “lats”) fuse is an example of an aponeurosis.

Each skeletal muscle is also richly supplied with blood vessels for nourishment, oxygen delivery, and waste removal. In addition, each muscle fiber of a skeletal muscle is supplied by the axonal branch of a somatic motor neuron, which signals the fiber to contract. Unlike cardiac and smooth muscle, the only way skeletal muscle can functionally contract is through signaling from the nervous system.

Skeletal Muscle Fibers

Because skeletal muscle cells are long and cylindrical, they are commonly called muscle fibers. Skeletal muscle fibers can be quite large for human cells, with diameters of up to 100eum and lengths up to 30 cm (11.8 in) on the upper leg Sartorius. During early development, embryonic myoblasts, each with its own nucleus, fuse with hundreds of other myoblasts to form multinucleated skeletal muscle fibers. Multiple nuclei mean multiple copies of genes, allowing the production of large amounts of proteins and enzymes needed for muscle contraction.

Some other terminology associated with muscle fibers is rooted in the Greeksarco, which means "flesh". The plasma membrane of muscle fibers is calledsarcolema, the cytoplasm is referred to assarcoplasma, and the specialized smooth endoplasmic reticulum, which stores, releases, and retrieves calcium ions (Ca++) it's calledsarcoplasmic reticulum (SR)(Figure 10.4). As will be described shortly, the functional unit of a skeletal muscle fiber is the sarcomere, a highly organized arrangement of contractile myofilaments.actin(fine strand) emyosin(thick filament), along with other supporting proteins.

10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax (2)

Figure10.4 muscle fiber A skeletal muscle fiber is surrounded by a plasma membrane called the sarcolemma, which contains sarcoplasm, the cytoplasm of muscle cells. A muscle fiber is made up of many fibrils, which give the cell its striated appearance.

(Video) BIO 246 A&P 10.1-10.2b Gross and Microscopic Muscle Anatomy

O Sarcômero

The striated appearance of skeletal muscle fibers is due to the arrangement of actin and myosin myofilaments in sequential order from one end of the muscle fiber to the other. Each bundle of these microfilaments and their regulatory proteins,troponinetropomiosina(along with other proteins) is calledsarcômero.

interactive link

See thisvideoto learn more about the macro and microstructures of skeletal muscle. (a) What are the names of the “junction points” between sarcomeres? (b) What are the names of the “subunits” within the myofibrils that run the length of skeletal muscle fibers? (c) What is the “double string of pearls” described in the video? (d) What gives skeletal muscle fiber its striated appearance?

The sarcomere is the functional unit of the muscle fiber. The sarcomere itself is clustered within the myofibril that runs the length of the muscle fiber and attaches to the sarcolemma at its end. As the myofibrils contract, the entire muscle cell contracts. Because myofibrils are only about 1.2eum in diameter, hundreds to thousands (each with thousands of sarcomeres) can be found within a muscle fiber. Each sarcomere has approximately 2eum long with a three-dimensional arrangement similar to a cylinder and is bounded by structures called Z disks (also called Z lines, because the images are two-dimensional), to which the actin myofilaments are anchored (Figure 10.5). Because actin and its troponin-tropomyosin complex (projecting from the Z disks toward the center of the sarcomere) form thinner filaments than myosin, it is calledfine filamentof the sarcomere. Likewise, because the myosin filaments and their multiple heads (projecting from the center of the sarcomere, towards the Z disks, but not all towards them) have more mass and are thicker, they are calledthick filamentdo sarcômero.

10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax (3)

Figure10,5 O Sarcômero The sarcomere, the region from one Z line to the next Z line, is the functional unit of a skeletal muscle fiber.

the neuromuscular junction

Another specialization of skeletal muscle is the location where the motor neuron terminal meets the muscle fiber – called theneuromuscular junction (JNM). It is here that the muscle fiber first responds to motor neuron signaling. Each skeletal muscle fiber in each skeletal muscle is innervated by a motor neuron in the JNM. Neuron excitation signals are the only way to functionally trigger fiber contraction.

interactive link

Each skeletal muscle fiber is supplied by a motor neuron in the JNM. See thisvideoto find out more about what's happening at NMJ. (a) What is the definition of a motor unit? (b) What is the structural and functional difference between a large motor unit and a small motor unit? (c) Can you give an example of each? (d) Why is the neurotransmitter acetylcholine degraded after binding to its receptor?

(Video) Lecture 10.2A Muscle tissue properties, Intro to Microanatomy

alternation excitation-contraction

All living cells have membrane potentials, or electrical gradients across their membranes. The inside of the membrane is usually around -60 to -90 mV relative to the outside. This is known as the cell membrane potential. Neurons and muscle cells can use their membrane potentials to generate electrical signals. They do this by controlling the movement of charged particles, called ions, across their membranes to create electrical currents. This is achieved by opening and closing specialized proteins in the membrane called ion channels. Although the currents generated by ions moving through these protein channels are very small, they form the basis of both neural signaling and muscle contraction.

Both neurons and skeletal muscle cells are electrically excitable, meaning they are capable of generating action potentials. An action potential is a special type of electrical signal that can travel along a cell membrane like a wave. This allows a signal to be transmitted quickly and reliably over long distances.

although the termalternation excitation-contractionconfuses or frightens some students, it boils down to this: for a skeletal muscle fiber to contract, its membrane must first be “excited” – in other words, it must be stimulated to fire an action potential. The action potential of the muscle fiber, which travels through the sarcolemma like a wave, is “coupled” to the actual contraction through the release of calcium ions (Ca++) of RS. Once released, Ca++interacts with the protective proteins, forcing them apart so that the actin-binding sites are available for attachment by the myosin heads. Myosin then pulls the actin filaments toward the center, shortening the muscle fiber.

In skeletal muscle, this sequence begins with signals from the somatic motor division of the nervous system. In other words, the “arousal” step in skeletal muscles is always triggered by nervous system signaling (Figure 10.6).

10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax (4)

Figure10.6 Motor plate and innervation In JNM, the axon terminal releases ACh. The motor endplate is the location of ACh receptors in the sarcolemma of the muscle fiber. When ACh molecules are released, they diffuse across a tiny gap called the synaptic cleft and bind to receptors.

Motor neurons that instruct skeletal muscle fibers to contract originate in the spinal cord, with a smaller number located in the brainstem for activation of skeletal muscles of the face, head, and neck. These neurons have long processes, called axons, that are specialized for transmitting action potentials over long distances – in this case, from the spinal cord to the muscle itself (which can be up to a meter away). The axons of several neurons group together to form nerves, like wires grouped together in a cable.

(Video) AHS 130 - Ch 10 - Sec 10.2 Anatomy of Skeletal Muscle

Signaling begins when a neuronalaction potentialtravels along the axon of a motor neuron and then along individual branches to terminate at the JNM. In JNM, the axon terminal releases a chemical messenger, orneurotransmitter, calledacetylcholine (ACh). ACh molecules diffuse through a tiny space calledsynaptic cleftand bind to ACh receptors located within theengine end plateof the sarcolemma on the other side of the synapse. Once ACh binds, a channel on the ACh receptor opens and positively charged ions can pass into the muscle fiber, causing it to shift.depolarize, which means that the muscle fiber membrane potential becomes less negative (closer to zero).

As the membrane depolarizes, another set of ion channels calledvoltage gated sodium channelsare triggered to open. Sodium ions enter the muscle fiber and an action potential rapidly spreads (or “fires”) across the entire membrane to initiate excitation-contraction coupling.

Things happen very quickly in the world of excitable membranes (think how fast you can snap your fingers once you decide to do so). Immediately after the membrane depolarizes, it repolarizes, restoring the negative membrane potential. Meanwhile, ACh in the synaptic cleft is degraded by the enzyme acetylcholinesterase (AChE), so that ACh cannot rebind to a receptor and reopen its channel, which would cause excitation and unwanted prolonged muscle contraction.

The propagation of an action potential along the sarcolemma is the excitation portion of the excitation-contraction coupling. Recall that this excitation actually triggers the release of calcium ions (Ca++) from its storage in the cell's SR. For the action potential to reach the SR membrane, periodic invaginations occur in the sarcolemma, calledTubules T(“T” stands for “across”). You must remember that the diameter of a muscle fiber can reach 100eum, so these T tubules ensure that the membrane can get close to the SR in the sarcoplasm. The arrangement of a T tubule with the RS membranes on either side is called atriad(Figure 10.7). The triad surrounds the cylindrical structure calledmyofibrils, which contains actin and myosin.

10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax (5)

Figure10.7 The T tubule Narrow T tubules allow the conduction of electrical impulses. The SR functions to regulate intracellular calcium levels. Two terminal cisternae (where the enlarged RS connects to the T-tubule) and a T-tubule make up a triad—a “three” of membranes, with those of the RS on two sides and the T-tubule sandwiched between them.

T tubules carry the action potential into the cell, which triggers the opening of calcium channels in the adjacent SR membrane, causing Ca++diffuse out of the SR and into the sarcoplasm. It's the arrival of Ca++in the sarcoplasm that initiates muscle fiber contraction by its contractile units, or sarcomeres.

FAQs

10.2 Skeletal Muscle - Anatomy and Physiology | OpenStax? ›

Skeletal muscles contain connective tissue, blood vessels, and nerves. There are three layers of connective tissue: epimysium

epimysium
Epimysium (plural epimysia) (Greek epi- for on, upon, or above + Greek mys for muscle) is the fibrous tissue envelope that surrounds skeletal muscle. It is a layer of dense irregular connective tissue which ensheaths the entire muscle and protects muscles from friction against other muscles and bones.
https://en.wikipedia.org › wiki › Epimysium
, perimysium, and endomysium
endomysium
The endomysium, meaning within the muscle, is a wispy layer of areolar connective tissue that ensheaths each individual muscle fiber, or muscle cell. It also contains capillaries and nerves.
https://en.wikipedia.org › wiki › Endomysium
. Skeletal muscle fibers are organized into groups called fascicles. Blood vessels and nerves enter the connective tissue and branch in the cell.

What is the normal level of skeletal muscle? ›

Although skeletal muscles typically make up roughly 35% of your body weight, this can vary from person to person. Men have about 36% more skeletal muscle mass than women. People who are tall or overweight also tend to have higher muscle mass. Muscle mass decreases with age in both men and women.

What is the anatomy and physiology of the skeletal system muscle? ›

Skeletal muscle is a highly organized tissue composed of bundles of muscle fibers called myofibers which contain several myofibrils. Each myofiber represents a muscle cell with its basic cellular unit, the sarcomere. Bundles of myofibers form fascicles, and bundles of fascicles form muscle tissue.

What is the anatomy of the skeletal muscle? ›

An individual skeletal muscle may be made up of hundreds, or even thousands, of muscle fibers bundled together and wrapped in a connective tissue covering. Each muscle is surrounded by a connective tissue sheath called the epimysium. Fascia, connective tissue outside the epimysium, surrounds and separates the muscles.

What is the order of muscle tissue from smallest to largest? ›

Hence, the organization of muscle tissue from the largest to the smallest is a muscle, fascicle, myofibril, and myofilaments.

Videos

1. 10.2 (c) Describe the structure of skeletal muscle and sarcomere
(NADZIRAH PAUZI Education)
2. Human Anatomy Lecture Ch 10 Skeletal Muscle Tissue
(Rita Marcon)
3. Lecture 10.2B Microanatomy part 2
(Keith's Human Anatomy channel)
4. Human Biology, Tissues of the body
(Dr. John Campbell)
5. Anatomy and Physiology
(Bozeman Science)
6. Chapter 10 - Muscle Systems
(WGTC Biology)

References

Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated: 30/09/2023

Views: 5714

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.